Topics

Material covered in class lectures 9/15 to 10/20. (Subgroups and homomorphisms up through Sylow Theorems.)

- 1. Know what our important theorems say, know how and when to use them:
 - Orbit-Stabilizer theorem
 - the homomorphism theorem aka 1st isomorphism theorem
- 2. Know results involving divisibility of orders by prime factors:
 - Lagrange's theorem
 - Cauchy's theorem
 - Class equation
 - Sylow Theorems
- 3. Be able to give precise and correct definitions of the important concepts and examples:
 - dihedral groups
 - kernel of a homomorphism
 - normal subgroup
 - (left/right) coset
 - equivalence relation, equivalence class, partition
 - quotient group
 - direct product, semi-direct product
 - group action, orbit, stabilizer, centralizer
 - Sylow *p*-subgroup
- 4. Be able to prove basic results proved in class/HW such as:
 - $\text{Ker}(f) = \{e\}$ if and only if f is injective.
 - If |G| = p, where *p* is a prime, then $G \cong \mathbb{Z}_p$.
 - The operation on G/N is well-defined when N is a normal subgroup of G.
 - If *N*, *A* are subgroups of *G* with *N* normal, then *AN* is a subgroup.
 - If *A*, *B* are normal subgroups of *G* such that $A \cap B = \{e\}$ then $\varphi : A \times B \to G$ defined by $\varphi(a, b) = ab$ is a homomorphism.
 - If *m*, *n* are relatively prime, then $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.

Practice problems

Review (easier) homework problems. Here are a few further practice problems.

Question 1 Consider the subgroups of D₅, $H = \langle \rho \rangle$ and $K = \langle \tau \rangle$. Are these normal subgroups?

Question 2 Let *G* be a group. Consider the relation on *G* defined by $g \sim h$ if there is an element $k \in G$ such that $g = khk^{-1}$. Show that \sim is an equivalence relation.

Question 3 Suppose that d|n. Show that $f : \mathbb{Z}_n \to \mathbb{Z}_d$ defined by $f([a]_n) = [a]_d$ is a well-defined homomorphisms. What is its kernel? What is $\mathbb{Z}_n/\text{Ker}(f)$?

Question 4 Is $\mathbb{Z}_9 \to \mathbb{Z}_5$, $[a]_9 \mapsto [a]_5$ well-defined?

Question 5 For which *a* is there a semi-direct product $\mathbb{Z}_5 \rtimes_{\alpha} \mathbb{Z}_a$ (not isomorphic to the direct product)?

Question 6 Is $SO_n \leq O_n$ normal? If so what is O_n/SO_n ? Is $O_n \leq GL_n$ normal? If so, what is GL_n/O_n ?

Question 7 Does the formula $aH \cdot bH = abH$ define a group structure on the set of cosets G/H for:

- (a) $G = S_3, H = \langle (12) \rangle$
- (b) $G = S_3, H = \langle (132) \rangle$

Question 8 How many elements does the subgroup of even permutations in S_n have?

Question 9 Show that \mathbb{Z}_{10} is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_5$.

Question 10 Lagrange's theorem tells us that the only possible orders of elements of *G* are the divisors of |G|. Let *d* be a divisor of 18. Does \mathbb{Z}_{18} always have an element of order *d*? Does D₉ always have an element of order *d*?

Question 11 If *G* is abelian and *p* is a prime, what are the possible values for n_p , the number of *p*-Sylow subgroups?

Question 12 (*This is much harder than an exam problem, but good practice to think about Sylow subgroups.*)

Suppose that *G* is a group of order 88. Let $H \le G$ be an 11-Sylow subgroup and *K* a 2-sylow subgroup. Must *H* be normal? What about *K*? (In each case, give an argument for normality or provide a counterexample).